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Basic Differentiation Rules

Basic Integration Formulas

  1. 
d
dx

[cu] = cu′

  4. 
d
dx[

u
v] =

vu′ − uv′
v2

  7. 
d
dx

[x] = 1

10. 
d
dx

[eu] = euu′

13. 
d
dx

[sin u] = (cos u)u′

16. 
d
dx

[cot u] = −(csc2 u)u′

19. 
d
dx

[arcsin u] =
u′

√1 − u2

22. 
d
dx

[arccot u] =
−u′

1 + u2

25. 
d
dx

[sinh u] = (cosh u)u′

28. 
d
dx

[coth u] = −(csch2 u)u′

31. 
d
dx

[sinh−1 u] =
u′

√u2 + 1

34. 
d
dx

[coth−1 u] =
u′

1 − u2

  2. 
d
dx

[u ± v] = u′ ± v′

  5. 
d
dx

[c] = 0

  8. 
d
dx

[∣u∣] =
u

∣u∣(u′),  u ≠ 0

11. 
d
dx

[loga u] =
u′

(ln a)u

14. 
d
dx

[cos u] = −(sin u)u′

17. 
d
dx

[sec u] = (sec u tan u)u′

20. 
d
dx

[arccos u] =
−u′

√1 − u2

23. 
d
dx

[arcsec u] =
u′

∣u∣√u2 − 1

26. 
d
dx

[cosh u] = (sinh u)u′

29. 
d
dx

[sech u] = −(sech u tanh u)u′

32. 
d
dx

[cosh−1 u] =
u′

√u2 − 1

35. 
d
dx

[sech−1 u] =
−u′

u√1 − u2

  3. 
d
dx

[uv] = uv′ + vu′

  6. 
d
dx

[un] = nun−1u′

  9. 
d
dx

[ln u] =
u′
u

12. 
d
dx

[au] = (ln a)auu′

15. 
d
dx

[tan u] = (sec2 u)u′

18. 
d
dx

[csc u] = −(csc u cot u)u′

21. 
d
dx

[arctan u] =
u′

1 + u2

24. 
d
dx

[arccsc u] =
−u′

∣u∣√u2 − 1

27. 
d
dx

[tanh u] = (sech2 u)u′

30. 
d
dx

[csch u] = −(csch u coth u)u′

33. 
d
dx

[tanh−1 u] =
u′

1 − u2

36. 
d
dx

[csch−1 u] =
−u′

∣u∣√1 + u2

  1.  ∫kf(u) du = k∫f(u) du

  3.  ∫du = u + C

  5.  ∫du
u

= ln∣u∣ + C

  7.  ∫au du = ( 1
ln a)au + C

  9.  ∫cos u du = sin u + C

11.  ∫cot u du = ln∣sin u∣ + C

13.  ∫csc u du = −ln∣csc u + cot u∣ + C

15.  ∫csc2 u du = −cot u + C

17.  ∫csc u cot u du = −csc u + C

19.  ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C

  2.  ∫[ f(u) ± g(u)] du = ∫f(u) du ± ∫g(u) du

  4.  ∫un du =
un+1

n + 1
+ C,  n ≠ −1

  6.  ∫eu du = eu + C

  8.  ∫sin u du = −cos u + C

10.  ∫tan u du = −ln∣cos u∣ + C

12.  ∫sec u du = ln∣sec u + tan u∣ + C

14.  ∫sec2 u du = tan u + C

16.  ∫sec u tan u du = sec u + C

18.  ∫ du

√a2 − u2
= arcsin 

u
a

+ C

20.  ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C
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TRIGONOMETRY

Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < θ < π�2.	
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Adjacent

θ
Hypotenuse

O
pp

os
ite

        sin θ =
opp
hyp

  csc θ =
hyp
opp

        cos θ =
adj
hyp

  sec θ =
hyp
adj

        tan θ =
opp
adj

  cot θ =
adj
opp

Circular function definitions, where θ is any angle.

θ
x

y

x

r

(x, y)
r = x2 + y2

y
        sin θ =

y
r
   csc θ =

r
y

        cos θ =
x
r
   sec θ =

r
x

        tan θ =
y
x
   cot θ =

x
y

Reciprocal Identities

sin x =
1

csc x
  sec x =

1
cos x

  tan x =
1

cot x

csc x =
1

sin x
  cos x =

1
sec x

  cot x =
1

tan x

Quotient Identities

tan x =
sin x
cos x

  cot x =
cos x
sin x

Pythagorean Identities
sin2 x + cos2 x = 1

1 + tan2 x = sec2 x        1 + cot2 x = csc2 x

Cofunction Identities

sin(π2 − x) = cos x    cos(π2 − x) = sin x

csc(π2 − x) = sec x    tan(π2 − x) = cot x

sec(π2 − x) = csc x    cot(π2 − x) = tan x

Even/Odd Identities
sin(−x) = −sin x	 cos(−x) = cos x

csc(−x) = −csc x	 tan(−x) = −tan x

sec(−x) = sec x	 cot(−x) = −cot x

Sum and Difference Formulas
sin(u ± v) = sin u cos v ± cos u sin v

cos(u ± v) = cos u cos v ∓ sin u sin v

tan(u ± v) =
tan u ± tan v

1 ∓ tan u tan v

Double-Angle Formulas
sin 2u = 2 sin u cos u
cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u

tan 2u =
2 tan u

1 − tan2 u

Power-Reducing Formulas

sin2 u =
1 − cos 2u

2

cos2 u =
1 + cos 2u

2

tan2 u =
1 − cos 2u
1 + cos 2u

Sum-to-Product Formulas

sin u + sin v = 2 sin(u + v
2 ) cos(u − v

2 )
sin u − sin v = 2 cos(u + v

2 ) sin(u − v
2 )

cos u + cos v = 2 cos(u + v
2 ) cos(u − v

2 )
cos u − cos v = −2 sin(u + v

2 ) sin(u − v
2 )

Product-to-Sum Formulas

sin u sin v =
1
2

[cos(u − v) − cos(u + v)]

cos u cos v =
1
2

[cos(u − v) + cos(u + v)]

sin u cos v =
1
2

[sin(u + v) + sin(u − v)]

cos u sin v =
1
2

[sin(u + v) − sin(u − v)]
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Welcome to Calculus: Early Transcendental Functions, Seventh Edition. We are excited to offer you a new edition 
with even more resources that will help you understand and master calculus. This textbook includes features and resources 
that continue to make Calculus: Early Transcendental Functions, Seventh Edition, a valuable learning tool for students 
and a trustworthy teaching tool for instructors.

Calculus: Early Transcendental Functions, Seventh Edition, provides the clear instruction, precise mathematics, and 
thorough coverage that you expect for your course. Additionally, this new edition provides you with free access 
to three companion websites:

•  CalcView.com––video solutions to selected exercises

•  CalcChat.com––worked-out solutions to odd-numbered exercises and access to online tutors

•  LarsonCalculus.com––companion website with resources to supplement your learning

These websites will help enhance and reinforce your understanding of the material presented in
this text and prepare you for future mathematics courses. CalcView® and CalcChat® are also
available as free mobile apps.

Features

NEW ®

The website CalcView.com contains video
solutions of selected exercises. Watch 
instructors progress step-by-step through 
solutions, providing guidance to help you 
solve the exercises. The CalcView mobile app 
is available for free at the Apple® App Store® 

or Google Play™ store. The app features an 
embedded QR Code® reader that can be used 
to scan the on-page codes  and go directly 
to the videos. You can also access the videos
at CalcView.com.

UPDATED ®

In each exercise set, be sure to notice the reference to 
CalcChat.com. This website provides free step-by-step 
solutions to all odd-numbered exercises in many of 
our textbooks. Additionally, you can chat with a tutor, 
at no charge, during the hours posted at the site. 
For over 15 years, millions of students have visited 
this site for help. The CalcChat mobile app is 
also available as a free download at the Apple® 
App Store® or Google Play™ store and features 
an embedded QR Code® reader.
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App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc. 
QR Code is a registered trademark of Denso Wave Incorporated.
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Preface ix

REVISED LarsonCalculus.com
All companion website features have been updated based on this revision. Watch videos explaining 
concepts or proofs from the book, explore examples, view three-dimensional graphs, download articles 
from math journals, and much more.

NEW Conceptual Exercises
The Concept Check exercises and Exploring Concepts exercises appear in each section. These
exercises will help you develop a deeper and clearer knowledge of calculus. Work through these
exercises to build and strengthen your understanding of the calculus concepts and to prepare you for 
the rest of the section exercises.

REVISED Exercise Sets
The exercise sets have been carefully and extensively examined to ensure they are rigorous and 
relevant and to include topics our users have suggested. The exercises are organized and titled 
so you can better see the connections between examples and exercises. Multi-step, real-life exercises 
reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the 
concepts in real-life situations.

REVISED Section Projects
Projects appear in selected sections and encourage you to explore applications related to the topics 
you are studying. We have added new projects, revised others, and kept some of our favorites. 
All of these projects provide an interesting and engaging way for you and other students to work 
and investigate ideas collaboratively.

Table of Contents Changes
Based on market research and feedback from users, we have made several changes to the table 
of contents.

•   We added a review of trigonometric functions (Section 1.4) to Chapter 1.

•   To cut back on the length of the text, we moved previous Section 1.4 Fitting Models to Data
(now Appendix G in the Seventh Edition) to the text-specific website at CengageBrain.com.

•   To provide more flexibility to the order of coverage of calculus topics, Section 4.5 Limits at 
Infinity was revised so that it can be covered after Section 2.5 Infinite Limits. As a result of this 
revision, some exercises moved from Section 4.5 to Section 4.6 A Summary of Curve Sketching.

•   We moved Section 5.6 Numerical Integration to Section 8.6.

•   We moved Section 8.7 Indeterminate Forms and L’Hôpital’s Rule to Section 5.6.

Chapter Opener
Each Chapter Opener highlights real-life applications used in the examples and exercises.
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x Preface

Section Objectives
A bulleted list of learning objectives provides 
you with the opportunity to preview what will 
be presented in the upcoming section.

Theorems
Theorems provide the conceptual framework 
for calculus. Theorems are clearly stated and 
separated from the rest of the text by boxes 
for quick visual reference. Key proofs often 
follow the theorem and can be found at 
LarsonCalculus.com.

Definitions
As with theorems, definitions are clearly stated 
using precise, formal wording and are separated 
from the text by boxes for quick visual reference.

Explorations
Explorations provide unique challenges to
study concepts that have not yet been formally 
covered in the text. They allow you to learn by 
discovery and introduce topics related to ones 
presently being studied. Exploring topics in this 
way encourages you to think outside the box.

Remarks
These hints and tips reinforce or expand upon 
concepts, help you learn how to study 
mathematics, caution you about common errors, 
address special cases, or show alternative or
additional steps to a solution of an example. 

How Do You See It? Exercise
The How Do You See It? exercise in each section presents a problem that you will solve
by visual inspection using the concepts learned in the lesson. This exercise is excellent for
classroom discussion or test preparation.

Applications
Carefully chosen applied exercises and examples are included throughout to address the
question, “When will I use this?” These applications are pulled from diverse sources, such
as current events, world data, industry trends, and more, and relate to a wide range of interests.
Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Historical Notes and Biographies
Historical Notes provide you with background information on the foundations of calculus. 
The Biographies introduce you to the people who created and contributed to calculus.

Technology
Throughout the book, technology boxes show you how to use technology to solve problems 
and explore concepts of calculus. These tips also point out some pitfalls of using technology.

Putnam Exam Challenges
Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will
challenge you and push the limits of your understanding of calculus.

206 Chapter 4 Applications of Differentiation

4.1 Extrema on an Interval

 Understand the definition of extrema of a function on an interval.
 Understand the definition of relative extrema of a function on an open interval.
 Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function f  on an 
interval I. Does f  have a maximum value on I? Does it have a minimum value? Where 
is the function increasing? Where is it decreasing? In this chapter, you will learn 
how derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

Definition of Extrema

Let f  be defined on an interval I containing c.

1. f (c) is the minimum of f  on I when f (c) ≤ f (x) for all x in I.

2. f (c) is the maximum of f  on I when f (c) ≥ f (x) for all x in I.

The minimum and maximum of a function on an interval are the extreme 
values, or extrema (the singular form of extrema is extremum), of the function 
on the interval. The minimum and maximum of a function on an interval are 
also called the absolute minimum and absolute maximum, or the global 
minimum and global maximum, on the interval. Extrema can occur at interior 
points or endpoints of an interval (see Figure 4.1). Extrema that occur at the 
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in 
Figures 4.1(a) and (b), you can see that the function f (x) = x2 + 1 has both a minimum 
and a maximum on the closed interval [−1, 2] but does not have a maximum on the 
open interval (−1, 2). Moreover, in Figure 4.1(c), you can see that continuity (or the 
lack of it) can affect the existence of an extremum on the interval. This suggests the 
theorem below. (Although the Extreme Value Theorem is   intuitively plausible, a proof 
of this theorem is not within the scope of this text.)

THEOREM 4.1 The Extreme Value Theorem

If f  is continuous on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

Exploration
Finding Minimum and Maximum Values The Extreme Value Theorem (like 
the Intermediate Value Theorem) is an existence theorem because it tells of the 
existence of minimum and maximum values but does not show how to find 
these values. Use the minimum and maximum features of a graphing utility to 
find the extrema of each function. In each case, do you think the x-values are 
exact or approximate? Explain your reasoning.

a. f (x) = x2 − 4x + 5 on the closed interval [−1, 3]
b. f (x) = x3 − 2x2 − 3x − 2 on the closed interval [−1, 3]

x
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3

4

5 (2, 5)

(0, 1)

Maximum
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y

f(x) = x2 + 1

(a) f  is continuous, [−1, 2] is closed.

x

1−1 2

2

3

3

4
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(0, 1)

Not a
maximum
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y

f(x) = x2 + 1

(b) f  is continuous, (−1, 2) is open.
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3

3

4
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Not a
minimum
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g(x) = x2 + 1,  x ≠ 0
2,          x = 0

y

(c) g is not continuous, [−1, 2] is closed.

Figure 4.1
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tips, and chapter projects.

Cengage Learning Testing Powered by Cognero 
CLT is a flexible online system that allows you to author, edit, and manage test  
bank content; create multiple test versions in an instant; and deliver tests from your 
LMS, your classroom, or wherever you want. This is available online via  
www.cengage.com/login.

Instructor Companion Site 
Everything you need for your course in one place! This collection of book-specific 
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download PowerPoint® presentations, images, instructor’s manual, and more.

Test Bank  (on instructor companion site) 
The Test Bank contains text-specific multiple-choice and free-response test forms.

  www.webassign.com

WebAssign from Cengage Calculus: Early Transcendental Functions, Seventh 
Edition, is a fully customizable online solution for STEM disciplines that empowers 
you to help your students learn, not just do homework. Insightful tools save you time 
and highlight exactly where your students are struggling. Decide when and what  
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2 Chapter 1 Preparation for Calculus

1.1 Graphs and Models

 Sketch the graph of an equation.
 Find the intercepts of a graph.
 Test a graph for symmetry with respect to an axis and the origin.
 Find the points of intersection of two graphs.
 Interpret mathematical models for real-life data.

The Graph of an Equation
In 1637, the French mathematician René Descartes revolutionized the study of 
mathematics by combining its two major fields—algebra and geometry. With 
Descartes’s coordinate  plane, geometric concepts could be formulated analytically and 
algebraic concepts could be viewed graphically. The power of this approach was such 
that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by  viewing 
calculus from multiple perspectives—graphically, analytically, and numerically—you 
will increase your understanding of core concepts.

Consider the equation 3x + y = 7. The point (2, 1) is a solution point of the 
 equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is 
 substituted for y. This equation has many other solutions, such as (1, 4) and (0, 7). To  
find other solutions systematically, solve the original equation for y.

y = 7 − 3x Analytic approach

Then construct a table of values by substituting several values of x.

 Numerical approach

From the table, you can see that (0, 7), (1, 4), (2, 1),  

Graphical approach: 3x + y = 7
Figure 1.1
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−4

−6

−2
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x

(3, −2)

(4, −5)

(2, 1)

(1, 4)

(0, 7)

3x + y = 7

y

(3, −2), and (4, −5) are solutions of the original 
equation 3x + y = 7. Like many equations, this 
equation has an infinite number of solutions. The set 
of all solution points is the graph of the equation, as 
shown in Figure 1.1. Note that the sketch shown in 
Figure 1.1 is referred to as the graph of 3x + y = 7,
even though it really represents only a portion of the 
graph. The entire graph would extend beyond the page.

In this course, you will study many sketching 
techniques. The simplest is point plotting—that is, 
you plot points until the basic shape of the graph 
seems apparent.

 Sketching a Graph by Point Plotting

To sketch the graph of y = x2 − 2, first construct a table of values. Next, plot the 
points shown in the table. Then connect the points with a smooth curve, as shown in 
Figure 1.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

 
x −2 −1 0 1 2 3

y 2 −1 −2 −1 2 7

 

x 0 1 2 3 4

y 7 4 1 −2 −5

The parabola y = x2 − 2
Figure 1.2
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y = x2 − 2

RENÉ DESCARTES (1596–1650)

Descartes made many 
contributions to  philosophy, 
science, and mathematics. The 
idea of representing points in the 
plane by pairs of real numbers 
and representing curves in the 
plane by equations was described 
by Descartes in his book La 
Géométrie, published in 1637.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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1.1 Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of 
a graph, you may need to plot many points. With only a few points, you could badly 
misrepresent the graph. For instance, to sketch the graph of

y =
1
30

x(39 − 10x2 + x4)

you plot five points: 

(−3, −3), (−1, −1), (0, 0), (1, 1), and (3, 3)

as shown in Figure 1.3(a). From these five points, you might conclude that the graph is 
a line. This, however, is not correct. By plotting several more points, you can see that 
the graph is more complicated, as shown in Figure 1.3(b).

x
−3 −2 −1 1 2 3

3
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1

−1

−2

−3

(0, 0)
(1, 1)

(3, 3)

(−3, −3)

(−1, −1) Plotting only a
few points can
misrepresent a
graph.
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−3

y = x (39 − 10x2 + x4)1
30

 (a) (b)

 Figure 1.3

TECHNOLOGY Graphing an equation has been made easier by technology. Even 
with technology, however, it is possible to misrepresent a graph badly. For instance, 
each of the graphing utility* screens in Figure 1.4 shows a portion of the graph of

y = x3 − x2 − 25.

From the screen on the left, you might assume that the graph is a line. From the 
screen on the right, however, you can see that the graph is not a line. So, whether 
you are sketching a graph by hand or using a graphing utility, you must realize that 
different “viewing windows” can produce very different views of a graph. In choosing 
a viewing window, your goal is to show a view of the graph that fits well in the 
context of the problem.

10

−10

−10

10   

5

−35

−5

5

 Graphing utility screens of y = x3 − x2 − 25
 Figure 1.4

*In this text, the term graphing utility means either a graphing calculator, such as the 
TI-Nspire, or computer graphing software, such as Maple or Mathematica.

Exploration
Comparing Graphical and 
Analytic Approaches
Use a graphing utility to 
graph each equation. In each 
case, find a viewing window 
that shows the important 
characteristics of the graph.

a. y = x3 − 3x2 + 2x + 5

b. y = x3 − 3x2 + 2x + 25

c. y = −x3 − 3x2 + 20x + 5

d. y = 3x3 − 40x2 + 50x − 45

e. y = −(x + 12)3

f. y = (x − 2)(x − 4)(x − 6)

A purely graphical approach 
to this problem would involve 
a simple “guess, check, and 
revise” strategy. What types of 
things do you think an analytic 
approach might involve? For 
instance, does the graph have 
symmetry? Does the graph 
have turns? If so, where are 
they? As you proceed through 
Chapters 2, 3, and 4 of this 
text, you will study many new 
analytic tools that will help you 
analyze graphs of equations 
such as these.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4	 Chapter 1  Preparation for Calculus

Intercepts of a Graph
Two types of solution points that are especially useful in graphing an equation are 
those having zero as their x- or y-coordinate. Such points are called intercepts because 
they are the points at which the graph intersects the x- or y-axis. The point (a, 0) is an 
x-intercept of the graph of an equation when it is a solution point of the equation. To 
find the x-intercepts of a graph, let y be zero and solve the equation for x. The point 
(0, b) is a y-intercept of the graph of an equation when it is a solution point of the 
equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For 
instance, consider the four graphs shown in Figure 1.5.

  Finding x- and y-Intercepts

Find the x- and y-intercepts of the graph of y = x3 − 4x.

Solution  To find the x-intercepts, let y be zero and solve for x.

 x3 − 4x = 0	 Let y be zero.

 x(x − 2)(x + 2) = 0	 Factor.

 x = 0, 2, or −2	 Solve for x.

Because this equation has three solutions, you can conclude that the graph has three  
x-intercepts:

(0, 0),  (2, 0),  and  (−2, 0).	 x-intercepts

To find the y-intercepts, let x be zero. Doing this produces y = 0. So, the y-intercept is

(0, 0).	 y-intercept

(See Figure 1.6.)

−4 −3 −1 1 3 4

−4

−3

−2

−1

3

4

x
(2, 0)(0, 0)(−2, 0)

y

y = x3 − 4x

	 Intercepts of a graph
	 Figure 1.6�

REMARK  Some texts  
denote the x-intercept as the  
x-coordinate of the point (a, 0) 
rather than the point itself. 
Unless it is necessary to make  
a distinction, when the term 
intercept is used in this text, it 
will mean either the point or  
the coordinate.

TEcHNOLOGY  Example 2 
uses an analytic approach 
to finding intercepts. When 
an analytic approach is not 
possible, you can use a graphical 
approach by finding the points 
at which the graph intersects the 
axes. Use the trace feature of a 
graphing utility to approximate 
the intercepts of the graph of 
the equation in Example 2. Note 
that your utility may have a 
built-in program that can find 
the x-intercepts of a graph. 
(Your utility may call this the 
root or zero feature.) If so, use 
the program to find the  
x-intercepts of the graph of the 
equation in Example 2.

No x-intercepts 
One y-intercept
Figure 1.5

Three x-intercepts 
One y-intercept

One x-intercept 
Two y-intercepts

No intercepts

x

y

x

y

x

y

x

y
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1.1 Graphs and Models 5

Symmetry of a Graph
Knowing the symmetry of a graph before attempting to sketch it is useful because you 
need only half as many points to sketch the graph. The three types of symmetry listed 
below can be used to help sketch the graphs of equations (see Figure 1.7).

1.  A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on the 
graph, then (−x, y) is also a point on the graph. This means that the portion of the 
graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.

2.  A graph is symmetric with respect to the x-axis if, whenever (x, y) is a point on the 
graph, then (x, −y) is also a point on the graph. This means that the portion of the 
graph below the x-axis is a mirror image of the portion above the x-axis.

3.  A graph is symmetric with respect to the origin if, whenever (x, y) is a point on 
the graph, then (−x, −y) is also a point on the graph. This means that the graph is 
unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1.  The graph of an equation in x and y is symmetric with respect to the y-axis 
when replacing x by −x yields an equivalent equation.

2.  The graph of an equation in x and y is symmetric with respect to the x-axis 
when replacing y by −y yields an equivalent equation.

3.  The graph of an equation in x and y is symmetric with respect to the origin 
when replacing x by −x and y by −y yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term 
has an even exponent (or is a constant). For instance, the graph of

y = 2x4 − x2 + 2

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has 
 symmetry with respect to the origin when each term has an odd exponent, as illustrated 
in Example 3.

 Testing for Symmetry

Test the graph of y = 2x3 − x for symmetry with respect to (a) the y-axis and (b) the 
origin.

Solution

a. y = 2x3 − x Write original equation.

 y = 2(−x)3 − (−x) Replace x by −x.

 y = −2x3 + x Simplify. The result is not an equivalent equation.

  Because replacing x by −x does not yield an equivalent equation, you can conclude 
that the graph of y = 2x3 − x is not symmetric with respect to the y-axis.

b.  y = 2x3 − x Write original equation.

  −y = 2(−x)3 − (−x) Replace x by −x and y by −y.

  −y = −2x3 + x Simplify.

  y = 2x3 − x Equivalent equation

  Because replacing x by −x and y by −y yields an equivalent equation, you can 
conclude that the graph of y = 2x3 − x is symmetric with respect to the origin, as 
shown in Figure 1.8. 

Figure 1.7

x

(x, y)(−x, y)

y-axis
symmetry

y

x

(x, y)

(x, −y)x-axis
symmetry

y

x

(−x, −y)

(x, y)

Origin
symmetry

y

Origin symmetry
Figure 1.8
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6	 Chapter 1  Preparation for Calculus

  Using Intercepts and Symmetry to Sketch a Graph

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of x − y2 = 1.

Solution  The graph is symmetric with respect to the x-axis because replacing y by 
−y yields an equivalent equation.

 x − y2 = 1	 Write original equation.

 x − (−y)2 = 1	 Replace y by −y.

 x − y2 = 1	 Equivalent equation

This means that the portion of the graph below the x-axis is a mirror image of the 
portion above the x-axis. To sketch the graph, first plot the x-intercept and the points  
above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in 
Figure 1.9.	

Points of Intersection
A point of intersection of the graphs of two equations is a point that satisfies both 
equations. You can find the point(s) of intersection of two graphs by solving their 
equations simultaneously.

  Finding Points of Intersection

Find all points of intersection of the graphs of

x2 − y = 3  and  x − y = 1.

Solution  Begin by sketching the graphs of both equations in the same rectangular 
coordinate system, as shown in Figure 1.10. From the figure, it appears that the graphs 
have two points of intersection. You can find these two points as follows.

 y = x2 − 3	 Solve first equation for y.

 y = x − 1	 Solve second equation for y.

 x2 − 3 = x − 1	 Equate y-values.

 x2 − x − 2 = 0	 Write in general form.

 (x − 2)(x + 1) = 0	 Factor.

 x = 2 or −1	 Solve for x.

The corresponding values of y are obtained by substituting x = 2 and x = −1 into 
either of the original equations. Doing this produces two points of intersection:

(2, 1)  and  (−1, −2).	 Points of intersection	

You can check the points of intersection in Example 5 by substituting into both of 
the original equations or by using the intersect feature of a graphing utility.

TEcHNOLOGY  Graphing utilities are designed so that they most easily graph 
equations in which y is a function of x (see Section 1.3 for a definition of function). 
To graph other types of equations, you need to split the graph into two or more parts 
or you need to use a different graphing mode. For instance, to graph the equation in 
Example 4, you can split it into two parts.

y1 = √x − 1	 Top portion of graph

y2 = −√x − 1	 Bottom portion of graph

Figure 1.9

5432
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1

−1

−2

x
(1, 0)

(2, 1)

(5, 2)x − y2 = 1

x-intercept

y

Two points of intersection
Figure 1.10

x − y = 1

x
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(2, 1)
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y
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1.1 Graphs and Models 7

Mathematical Models
Real-life applications of mathematics often use equations as mathematical models. In 
developing a mathematical model to represent actual data, you should strive for two 
(often conflicting) goals––accuracy and simplicity. That is, you want the model to be 
simple enough to be workable, yet accurate enough to produce meaningful results. 
Appendix G explores these goals more completely.

 Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in 
parts per million) in Earth’s atmosphere. The January readings for various years are 
shown in Figure 1.11. In the July 1990 issue of Scientific American, these data were 
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using 
the quadratic model

y = 0.018t2 + 0.70t + 316.2 Quadratic model for 1960–1990 data

where t = 0 represents 1960, as shown in Figure 1.11(a). The data shown in 
Figure 1.11(b) represent the years 1980 through 2014 and can be modeled by

y = 0.014t2 + 0.66t + 320.3 Quadratic model for 1980–2014 data

where t = 0 represents 1960. What was the prediction given in the Scientific American 
article in 1990? Given the second model for 1980 through 2014, does this prediction  
for the year 2035 seem accurate?
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Solution To answer the first question, substitute t = 75 (for 2035) into the first 
model.

y = 0.018(75)2 + 0.70(75) + 316.2 = 469.95 Model for 1960–1990 data

So, the prediction in the Scientific American article was that the carbon dioxide 
concentration in Earth’s atmosphere would reach about 470 parts per million in the year 
2035. Using the model for the 1980–2014 data, the prediction for the year 2035 is

y = 0.014(75)2 + 0.66(75) + 320.3 = 448.55. Model for 1980–2014 data

So, based on the model for 1980–2014, it appears that the 1990 prediction was too high.
 

The models in Example 6 were developed using a procedure called least squares 
regression (see Section 13.9). The older model has a correlation of r2 ≈ 0.997, and for 
the newer model it is r2 ≈ 0.999. The closer r2 is to 1, the “better” the model.

The Mauna Loa Observatory 
in Hawaii has been measuring 
the increasing  concentration 
of carbon dioxide in Earth’s 
atmosphere since 1958.

Gavriel Jecan/Terra/Corbis
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8	 Chapter 1  Preparation for Calculus

1.1	 Exercises	 See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONcEPT CHEcK
1.  �Finding Intercepts  Describe how to find the x- and 

y-intercepts of the graph of an equation.

2.  �Verifying Points of Intersection  How can you 
check that an ordered pair is a point of intersection of 
two graphs?

Matching  In Exercises 3–6, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
−1 1−1

1

2

y 	 (b) 

x

y

−1 1 2 3
−1

1

2

3

(c) 

21

2

1

−1

−2

−2
x

y 	 (d) 

x
2−2

−2

2

4

y

  3.	 y = −3
2 x + 3	   4.	 y = √9 − x2

  5.	 y = 3 − x2	   6.	 y = x3 − x

�Sketching a Graph by Point Plotting  In 
Exercises 7–16, sketch the graph of the equation 
by point plotting.

  7.	 y = 1
2 x + 2	   8.	 y = 5 − 2x

  9.	 y = 4 − x2	 10.	 y = (x − 3)2

11.	 y = ∣x + 1∣	 12.	 y = ∣x∣ − 1

13.	 y = √x − 6	 14.	 y = √x + 2

15.	 y =
3
x
	 16.	 y =

1
x + 2

Approximating Solution Points Using Technology  In 
Exercises 17 and 18, use a graphing utility to graph the 
equation. Move the cursor along the curve to approximate the 
unknown coordinate of each solution point accurate to two 
decimal places.

17.	 y = √5 − x	 18.	 y = x5 − 5x

	 (a)  (2, y)		  (a)  (−0.5, y)
	 (b)  (x, 3)		  (b)  (x, −4)

�Finding Intercepts  In Exercises 19–28, find 
any intercepts.

19.	 y = 2x − 5	 20.	 y = 4x2 + 3

21.	 y = x2 + x − 2	 22.	 y2 = x3 − 4x

23.	 y = x√16 − x2	 24.	 y = (x − 1)√x2 + 1

25.	 y =
2 − √x
5x + 1

	 26.	 y =
x2 + 3x

(3x + 1)2

27.	 x2y − x2 + 4y = 0	 28.	 y = 2x − √x2 + 1

�Testing for Symmetry  In Exercises 29–40, 
test for symmetry with respect to each axis and to 
the origin.

29.	 y = x2 − 6	 30.	 y = 9x − x2

31.	 y2 = x3 − 8x	 32.	 y = x3 + x

33.	 xy = 4	 34.	 xy2 = −10

35.	 y = 4 − √x + 3	 36.	 xy − √4 − x2 = 0

37.	 y =
x

x2 + 1
	 38.	 y =

x5

4 − x2

39.	 y = ∣x3 + x∣	 40.	 ∣y∣ − x = 3

�Using Intercepts and Symmetry to Sketch 
a Graph  In Exercises 41–56, find any intercepts 
and test for symmetry. Then sketch the graph of 
the equation. 

41.	 y = 2 − 3x	 42.	 y = 2
3 x + 1

43.	 y = 9 − x2	 44.	 y = 2x2 + x

45.	 y = x3 + 2	 46.	 y = x3 − 4x

47.	 y = x√x + 5	 48.	 y = √25 − x2

49.	 x = y3	 50.	 x = y4 − 16

51.	 y =
8
x
	 52.	 y =

10
x2 + 1

53.	 y = 6 − ∣x∣	 54.	 y = ∣6 − x∣
55.	 3y2 − x = 9	 56.	 x2 + 4y2 = 4

�Finding Points of Intersection  In Exercises 
57–62, find the points of intersection of the graphs 
of the equations. 

57.	  x + y = 8	 58.	  3x − 2y =  −4

	  4x − y = 7		   4x + 2y =  −10

59.	  x2 + y = 15	 60.	 x = 3 − y2

	  −3x + y = 11		  y = x − 1

The symbol  indicates an exercise in which you are instructed to use graphing 
technology or a symbolic computer algebra system. The solutions of other exercises may 
also be facilitated by the use of appropriate technology.

The symbol  and a red exercise number indicate that a video solution can be seen at 
CalcView.com.
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1.1 Graphs and Models 9

61.  x2 + y2 = 5 62.  x2 + y2 = 16

  x − y = 1   x + 2y = 4

Finding Points of Intersection Using Technology In 
Exercises 63–66, use a graphing utility to find the points of 
intersection of the graphs of the equations. Check your results 
analytically.

63. y = x3 − 2x2 + x − 1 64. y = x4 − 2x2 + 1

 y = −x2 + 3x − 1  y = 1 − x2

65. y = √x + 6 66. y = −∣2x − 3∣ + 6

 y = √−x2 − 4x  y = 6 − x

67.  Modeling Data The table shows the Gross Domestic 
Product, or GDP (in trillions of dollars), for 2009 through 
2014. (Source: U.S. Bureau of Economic Analysis)

 
Year 2009 2010 2011 2012 2013 2014

GDP 14.4 15.0 15.5 16.2 16.7 17.3

  (a)  Use the regression capabilities of a graphing utility to find 
a mathematical model of the form y = at + b for the data. 
In the model, y represents the GDP (in trillions of dollars) 
and t represents the year, with t = 9 corresponding to 2009.

 (b)  Use a graphing utility to plot the data and graph the model. 
Compare the data with the model.

 (c) Use the model to predict the GDP in the year 2024.

69.  Break-Even Point Find the sales necessary to break 
even (R = C) when the cost C of producing x units is 
C = 2.04x + 5600 and the revenue R from selling x units is 
R = 3.29x.

70.  Using Solution Points For what values of k does the 
graph of y2 = 4kx pass through the point?

 (a) (1, 1) (b) (2, 4)
 (c) (0, 0) (d) (3, 3)

EXPLORING CONCEPTS
71.  Using Intercepts Write an equation whose graph 

has intercepts at x = −3
2, x = 4, and x = 5

2. (There is 
more than one correct answer.)

72.  Symmetry A graph is symmetric with respect to the 
x-axis and to the y-axis. Is the graph also symmetric with 
respect to the origin? Explain.

73.  Symmetry A graph is symmetric with respect to one 
axis and to the origin. Is the graph also symmetric with 
respect to the other axis? Explain.

 74.  HOW DO YOU SEE IT? Use the graphs of 
the two equations to answer the questions below.

−2 2 4
x

−4

2

4

6

y

y = x3 − x2

4

y = x2 + 2

(a) What are the intercepts for each equation?

(b) Determine the symmetry for each equation.

(c)  Determine the point of intersection of the two 
equations.

 74.  

True or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the x-axis, then (4, −5) is also a point on the graph.

76.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the y-axis, then (4, −5) is also a point on the graph.

77.  If b2 − 4ac > 0 and a ≠ 0, then the graph of

 y = ax2 + bx + c

 has two x-intercepts.

78.   If b2 − 4ac = 0 and a ≠ 0, then the graph of 

 y = ax2 + bx + c

 has only one x-intercept.

 The table shows the numbers of cell phone subscribers 
(in millions) in the United States for selected years. 
(Source: CTIA-The Wireless Association)

 
Year 2000 2002 2004 2006

Number 109 141 182 233

 
Year 2008 2010 2012 2014

Number 270 296 326 355

(a)  Use the regression capabilities of a graphing utility to 
find a mathematical model of the form y = at2 + bt + c 
for the data. In the model, y represents the number of 
subscribers (in millions) and t represents the year, with 
t = 0 corresponding to 2000.

(b)  Use a graphing 
utility to plot the 
data and graph the 
model. Compare 
the data with the 
model.

(c)  Use the model to 
predict the number 
of cell phone 
subscribers in the United States in the year 2024.

68. Modeling Data

ChrisMilesPhoto/Shutterstock.com
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